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Chapter 1

Introduction

The South Florida Regional Simulation Model (SFRSM) consists of two computer modules

commonly referred to as the Hydrologic Simulation Engine (HSE) and the Management

Simulation Engine (MSE). The HSE is capable of simulating one and two dimensional

overland and ground water 
ow. The current document describes some of the ideas be-

hind the conceptualization of the HSE and the development of the structure of the code.

This document is somewhat common to the �nal C++ version of the code, and its prede-

cessor, the FORTRAN version. The FORTRAN version was developed as an experimental

tool to test the numerical methods, and to plan the design of the C++ version. The

C++ version may look much di�erent from the FORTRAN version in the end; but, the

basic concepts may not be much di�erent from what is described in the document. A

description of the FORTRAN code is also included in this document. Governing equations

and the mathematical derivations are described in a separate document.

The HSE consists of a two-dimensional overland 
ow module, a two-dimensional

ground water module, and a one-dimensional canal 
ow module. The overland 
ow

module and the canal 
ow module use di�usion 
ow instead of complete depth averaged

dynamic 
ow described by the Saint Venant equations. The approximation is justi�ed

because the inertia terms are extremely small in the study area. A semi-implicit �nite
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volume method is used to solve the 2-D di�usion 
ow equations. The 
ow domain is dis-

cretized using an un-structured triangular grid. The model is developed so that it can be

used with almost any time step, and almost any triangular discretization used in practical

applications. A weighted implicit method is used to improved stability. This model, as in

the case of any other model does not have a guarantee against failure due to nonlinear

instability. The model can simulate structures, levees, and various other boundary condi-

tions.

The 1-D canal network model also uses a �nite volume method in the 1-D sense. Any

network of canals with practically any number of boundary conditions can be solved using

the 1-D model. The overland 
ow, ground water 
ow and the 1-D canal 
ow modules can

be used either as components of the HSE, or independently as free-standing models. The

modules can be used to make short or long term simulations over large or small areas when

di�usion 
ow approximation of the St. Venant equations is valid. During the solution

using the implicit method, the overland and groundwater modules populate sub-matrices

that will �nally be sent to the sparse solver. The canal 
ow module populates another

sub-matrix. Some of the remaining elements of the matrix get �lled up depending on the

interactions between the overland and canal 
ow elements.

A numerical model is not exactly equal to the physical system it represents. It only

approximates the hydraulic and other characteristics of the area. In the present case, trian-

gles are used to represent natural areas, parking lots, farms and various other areas which

are not so triangular. As a consequence, the results coming out of a model are only as

good as the triangular approximation used to represent natural areas. Fortunately, minute

features in natural areas have a little e�ect on the overall 
ow patterns that dominate an

area, and therefore, a set of �nite triangles in most cases can represent the 
ow domain

su�ciently accurately. Minor geometrical disparities can be compensated by calibration of

parameters assigned to the idealized triangles. Fortunately, physically based models such
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as the current model have been shown to be useful and adequate even if the model does

not have the exact physical representations of local conditions.

The current documentation includes some basic ideas behind the conceptualization of

the model, de�nitions of variables, and a descriptions of the test cases. The test cases

are useful in verifying the accuracy of the models, demonstrating the use of the model,

and setting up benchmark solutions so that the model can be run during di�erent stages

of development to check if the integrity of the computations is violated specially after

modi�cations. Some intermediate results are also included to assist in isolating any bugs.

A benchmark test for run time will also be established so that the model run time can be

compared after a model enhancement.

The documentation also includes some theoretical formulations useful in either devel-

oping the model, or justifying its formulation, not having a clearly de�ned location in any

other documentation. The section on the "mathematics of the source term" is one such

example. These sections will be removed as soon as other vehicles for the purpose become

available.

1.1 Ideas for the future

This is one section that is very di�cult to write for a computer model because everything

about modeling is changing. However, it is useful to document the prevailing wisdom

so that alternative ideas can be attracted in the future without hinderance. Two of the

planned ideas are the introduction of parallel processing, and the periodic updating of the

sparse solvers to make sure that the model used the best available computer technology.

Considering the immediate modeling needs, a water quality model using a simple trans-

port algorithm is not an extremely far fetched idea. The 
exible architecture of the model
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supports an easy implementation, and possible expansion into a more accurate module

with ecological, �re or other plug-ins.

If improvement of the di�usion network model is considered to be important, coupling

of a dynamic river network model using complete equations to the same sparse solver is

one suggestion. Such a modi�cation will enable the use of full equations in selected areas,

and maintain the extremely e�cient di�usion modeling over other areas.

In terms of algorithm developments, a full equation model is always a possibility. Finite

element models that can carry out this task are already available, even if the e�ciency of

such models in a typical application to South Florida is low. One of the recent methods

that drew the attention is a second order projection method already tested with Navier

Stokes Equations by NASA (Lou, 1997). This is a splitting method that can also be

used with the current di�usion solver to improve its velocity solution. Starting with the

di�usion solution at every time step, a hyperbolic solver module can be used to improve

the approximate velocity solution obtained by the di�usion solver.
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Chapter 2

Two-dimensional overland and

groundwater 
ow models

The application of the 2-D overland and groundwater 
ow models to arbitrary regions

requires discretization of the model domain into triangular cells. The hydraulic charac-

teristics of the region are then assigned to the cells. Flow conditions in the model are

explained using water levels of the cells, and 
ows across walls. Boundary conditions

are assigned to cells or cell walls. If 
ows across speci�c 
ow lines are needed as model

output, the model uses cell walls to compute and monitor them.

In the current �nite volume formulation using triangular cells, circumcenters are used

to represent the respective triangles. This is due to the mixed �nite element method that

underlies the current derivation of the �nite volume method. Water level, ET, roughness,

or any other cell variable at the circumcenter may be slightly di�erent from its value at

the centroid, which truly represents the triangle. However, considering the complexity of

transferring values between the circumcenter and the centroid, and considering the need

for consistency, cell average values are used in the computations throughout the simulation

to represent cell values. Circumcenters are used to represent the geometric locations of

these average values. Several numerical experiments were carried out to �nd a way to
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transfer values between the centroid and the circumcenter using the average water surface

slope of the triangle. However, it was found that the error in the adjustment was too

large at times, and the method failed. Numerical experiments showed that the results are

accurate even without these corrections. If this adjustment is found to be important in

the future, studies may be necessary to develop a better method, or the distance between

the two points may have to be kept signi�cantly small by selecting triangles that are not

extreme in shape with respect to this criterion.

2.1 Discretization of the model domain

Implementation of the �nite volume method requires the model domain to be discretized

into cells in the shape of polygons. The current implementation however limits the polygon

shape to triangles. Furthermore, model errors are found to be smaller with acute angled

triangles. The triangular discretization method used in the model is popular among most

�nite element models. These triangles are expected to completely cover the model do-

main. The numbering method for triangles is the same used by grid generation packages

such as the Argus mesh maker, GMS and TECPLOT.

Finite volume triangles are marked using cell numbers 1; 2; : : : ne in which ne is the

number of cells. Variables such as the water level, ground elevation, ET, rainfall, and

parameters such as 
ow roughness are de�ned for cells. Nodes or vertices of the triangles

are numbered using node numbers. An input data �le describing a tessellation must con-

sists of nodal connectivity and nodal coordinate data. Table 2.1 shows a sample data set

for the area in Fig. 2.1. The connectivity of cells is described using node numbers around

them written in clockwise or counterclockwise direction. A clockwise direction is used in

the example. In Table 2.1, cell 1 is de�ned by nodes 1, 2 and 6, and the data line simply

has 1 1 2 6. In the example, the origin is assumed to be at node 13, and the length of a

small square is assumed to be 5000.0 m. The order of numbering of cells or nodes does
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not a�ect the run time of the model because of the use of sparse solvers instead of banded

matrix solvers. If nodes and elements are numbered with gaps, internal representation of

the code has to skip the gaps to create the consecutive numbering system used within the

model. Most mesh generators are capable of creating connectivity and nodal coordinate

data that can be used directly in the model.

An ideal discretization of a domain will have equal sized equilateral triangles �lling up

the space with no jaggerred edged boundaries. Triangles closer to equilateral in shape

give smaller errors. Obtuse angled triangles may produce larger errors. Without precon-

ditioners, the condition number of the solution matrix may be proportional to the ratio of

the largest to the smallest cell areas under uniform hydraulic conditions. A closer to ideal

discretization would reduce both the numerical errors in the model and the number of

iterations, by creating well conditioned sti�ness matrices. Uniformly sized triangles have

the same advantage in explicit schemes too because stability is decided by the size of the

smallest triangles.

A model domain described using cells is bounded by cell walls. Cells contain water,

and cell walls contain functions that control the 
ow of water. Rainfall, in�ltration, perco-

lation, evapo-transpiration, containment of unsaturated 
ow, and other functions mainly

associated with the vertical movement of water are described using functions and vari-

ables de�ned for cells. Two dimensional 
ow, structure 
ow, groundwater 
ow and other

functions associated with the horizontal movement of water are described using variables

de�ned for walls. Cells and walls are numbered in the model. The internal representation

of cell walls is important to the user only because some internal and boundary conditions

are associated with them. Levees, structures and canals are some of the 
ow functions

attached to walls.
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Table 2.1: The data set describing the discretization in Fig. 2.1.

CONNECTIVITY

CELL NODES

1 1 2 6

2 2 3 7

3 3 4 8

4 5 6 10

5 6 7 11

6 7 8 12

7 9 10 14

8 10 11 15

9 11 12 16

10 1 6 5

11 2 7 6

12 3 8 7

13 5 10 9

.................

NODAL CO-ORDINATES

NODE X Y

1 0.0 15000.0

2 5000.0 15000.0

3 10000.0 15000.0

4 15000.0 15000.0

5 0.0 10000.0

6 5000.0 10000.0

7 10000.0 10000.0

8 15000.0 10000.0

9 0.0 5000.0

10 5000.0 5000.0

11 10000.0 10000.0

...........................
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Figure 2.1: A �nite volume grid discretization.

2.1.1 Cell walls

All the walls are internally numbered by the model, and the user has to know them only

to assign them to structures and other 
ow features. By default, all the internal walls are

assigned as 2-D 
ow walls, and all external walls are assigned as no-
ow walls. All the

walls sharing a node with the boundary are assigned as 1-D walls. Any of the default type

can be changed by de�ning the required function in the code, and associating it with the

data in the input data �le. Walls are numbered arbitrarily without gaps in the numbering.

Table 2.2 shows how data is represented internally in the model for the example in Fig. 2.1.

Column 1 of Table 2.2 shows the wall numbers. Columns 2 and 3 show the cells on

opposite sides of the wall. In the case of external walls, only one cell is found, and a value

of 0 is assigned to the second place. Letters N1, N2, N3, N4 are also used in the table to

explain the data. Columns marked N3 and N4 show the node numbers de�ning the wall,

12



Table 2.2: An example describing the cell walls.

Wall Cell N1 Cell N2 Node N3 Node N4 OL Type OL Seq. GW Type GW Seq.

1 1 10 1 6 0 0 0 0

2 1 11 2 6 1 0 1 0

3 2 11 2 7 0 0 0 0

4 2 12 7 2 1 0 1 0

5 3 12 3 8 4 1 3 0

6 4 10 5 6 4 2 0 0

7 4 13 5 10 2 0 2 0

: : :

Overland 
ow wall Types:

0 = No 
ow wall

1 = Overland 
ow type wall

2 = Direct cell to cell 
ow based on Manning's equation.

3 = Uniform 
ow

4 = Structure type A (whatever)

5 = Structure type B (whatever)

6 = Weir used for the Kissimmee study.

7 and over... available ..

Groundwater 
ow wall types:

0 = No 
ow wall

1 = Laplacian 
ow walls

2 = Direct cell to cell 
ow based on Darcy's equation.

3 = Canal seepage walls (not de�ned yet)
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automatically computed by the model pre-processor. N3 and N4 are placed in ascending

order. The ascending order is used so that the wall can be searched easily when trying

to assign boundary conditions. Column 6 shows the type of the wall, which decides the

type of 
ow transfer that can take place across the wall. If the overland (OL) 
ow type

is 0, it is a no-
ow wall. The bottom section of Table 2.2 shows various overland and

groundwater 
ow walls used in the FORTRAN code.

2.1.2 Flow conditions associated with walls

Flow functions and certain boundary condition types such as the no-
ow type and the

structure type are de�ned at walls. These boundary conditions are speci�ed by changing

the default wall types of 1 for internal walls, 0 for no-
ow walls and 2 for 1-D walls to the

new types. In the internal representation shown in Table 2.2, walls 5 and 6 for example are

for structures. The input data �le provides the necessary boundary condition information

to �ll this internal data. A sample boundary condition �le is shown in Table 2.3. The

�rst row of the table shows a structure type 4 spanning between nodes 3 and 8. The

sequence numbers 1 and 2 indicate that there are two structures of the same type 4 using

di�erent sets of parameters. The parameters used for the structure equations are di�erent

in this case even if the same function for structure type 4 is called for both structures.

The parameter values can be listed immediately below the line in the data �le, or in a

di�erent data �le. The values 0.012, 25.3 etc. in the example are the parameters for the

�rst structure of type 4. The values 0.012, 13.2, etc., are for the second structure of type

4. The parameters may include weir coe�cients, gate openings or other relevant data.

Row 5 of Table 2.2 shows a structure type 0 which represents no 
ow as in the case of

a levee. Once values in the table are read, the default wall types are changed to create

Table 2.2.

Table 2.3: An example of an input overland 
ow boundary condition �le.

Node N3 Node N4 Type Sequence
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3 8 4 1

0.012 25.3 2.2E-3

5 6 4 2

0.012 13.2 2.1E-3

1 6 0 0

Boundary conditions associated with ground water 
ow are assigned in a similar man-

ner, and can be read from a similar data �le. In the internal representation, wall 5 of

Table 2.2 for example, the ground water wall is of type 3. This type can be de�ned within

the code as needed. It can easily be a sheet pile wall with certain seepage characteristics.

When the ground water 
ow boundary condition �le is read, the default ground water

wall types which are the same as overland 
ow wall types are changed to the new types.

Wall and cell numbers and the nodal connectivities do not change as a result of boundary

condition assignments.

2.1.3 Flow conditions associated with cells

The basic state variables in the model are the water levels. Water levels, ground eleva-

tions, and the parameters required to obtain the vertical solution are associated with cells.

Rainfall, ET and in�ltration are three of the quantities considered in the vertical solution,

and are also associated with cells. Other parameters associated with the cells include the

roughness coe�cients, hydraulic conductivities, and the storage coe�cients. Boundary


ow and well pumping are also associated with cells, and are treated similar to the way

any other source terms are treated.

When there is a pumping well or a 
ow boundary condition located in a cell, the

correct 
ow rate is taken into or out of the cell based on the 
ow time series data �le.

The location of the well within the cell or the identity of the wall with the 
ow boundary

condition are not important for the computations. Table 2.4 shows the representation
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of in
ow or out
ow into cells 3, 4, 5 and 8. In
ows into cells 3 and 4 are associated

with input time series 2, and the in
ows into cells 5 and 8 are associated with input time

series 1 and 3. Even when the in
ow data is associated with certain walls as in the case

of 
ows through external walls, the net e�ect on the model is the gain or loss of 
ow in

the cell. Therefore, wall numbers are not used when specifying 
ow boundary conditions.

When time series data for a boundary are read, they are related to the correct cells using

sequence numbers shown in Table 2.4.

Table 2.4: An example of in
ow boundary condition data

CELL NO. SEQUENCE NO.

3 2

4 2

5 1

8 3

2.1.4 Head boundary conditions

It is possible to assign the water level of any cell to an input time series. The data

required includes the cell number, and the sequence number of the time series as shown

in Table 2.5. The time series data can be provided at regular time intervals which can be

di�erent from the length of the time step. The value at any time within the regular time

interval is computed using linear interpolation.

Table 2.5: An example of a head boundary condition.

CELL NO. SEQUENCE NO. OF TIME SERIES DATA

17 2

18 2

12 1

6 3
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2.1.5 Simulation of 
ow in the vicinity of boundaries

When boundary conditions are speci�ed at walls causing the replacement of two-dimensional


ow walls with new walls, 
ows across any nearby walls sharing nodes with the new bound-

ary wall are a�ected. This is speci�cally true in the case of no-
ow boundary walls. The


ow is then con�ned to be tangential to the no-
ow wall, and the 
ow across neighbor-

ing walls cease to be fully two dimensional. This local a�ect is taken into account by

converting the neighboring walls to "direct 
ow" or 1-D walls across which the 
ow rate

depends on the distance between their centroids, water levels, and the average conductivity

characteristics. The modi�cation of the 2-D wall type to direct wall type is done internally.

A similar wall type modi�cation is carried out during the drying of cells too. Dry areas

temporarily create a no-
ow wall between the dry and wet boundaries. These no-
ow

walls become fully 2-D walls when the cells become wet again.

2.1.6 Guidelines for discretizing 2-D domains

Hydrologic Models are tools used to understand hydrologic conditions of landscapes. The

results of models are only as good as the underlying concepts and the assumptions used

in developing the models. Discretization is one of the processes during which many

assumptions are made about the shape of the area being modeled. Model developers make

every e�ort to develop models that can be accurate under as many conditions as possible.

However, there are many practical and resource limitations that make it di�cult to achieve

this goal. Even if every attempt is made to prevent disasters, it is easy for any model to

be used under a wrong set of conditions, and obtain useless results. Following guidelines

direct the user to conditions under which the current model can be safely used. The

model is designed such that the governing equations and the assumptions behind model

conceptualizations are not violated under most of these conditions. In many models, this
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Figure 2.2: De�nition sketch explaining cell and wall types.

is not an easy task. For example, covering the South Florida landscape with triangles is

never possible if a very high level of perfection is expected, because natural landscapes

rarely have linear boundaries. The accuracy of the model results depend on the accuracy

of the representation itself. If the representation is really bad, it may not be advisable to

expect much out of the models either. However, most reasonable representations have

been found to be adequate for practical purposes, when used with caution. The following

list contains some of the basic steps useful in creating meshes and making model runs.

1 Mark the model boundaries: The �rst step in the discretization involves marking

the model domain. It is important to have boundaries which are easily de�nable

from a hydraulic point of view, than to limit the model coverage to exactly what is

needed. It may be necessary to include certain areas that are not ordinarily needed,

to achieve this goal. Easily de�nable boundaries include no-
ow boundaries as in

the case of major 
ow divides, tidal or lake boundaries, structure boundaries with

known structure characteristics, etc. Boundaries should not be placed across major
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ow paths with unknown or inaccurate 
ows, except under extremely desperate

circumstances.

2 Mark land use type boundaries: Within the areas marked for the model domain,

areas designated to speci�c land use types have to be marked. It is ideal if triangles

or polygons do not have more than one land use type. If mixed land use types

become necessary, the physical properties have to be weighted to take mixed types

into account.

3 Mark areas which need more resolution: If the topographic elevation or the land use

type vary signi�cantly, and if it is necessary to study local 
ow conditions in detail,

it is important to have a higher resolutions. In such cases, the solution accuracy

can be improved by introducing a gradual transitions of polygon shapes and sizes

between high resolution areas to low resolution areas. A gradual transition can also

prevent the triangles becoming too far from equilateral.

4 Locate structures and levees: Cell walls have to be placed at levees and structures

so that they can be assigned as proper wall types. Structures associated with 1-D

canal systems have to be considered separately.

5 Mark boundary condition cells: When the cells used to impose the head boundary

conditions are large, head boundary conditions can introduce errors. Such errors

can be minimized by re�ning the cells in the neighborhood of head boundaries. Cell

re�nement is useful near other kinds of boundary conditions too. In the case of 
ow

boundaries, mesh re�nement can introduce the correct length of 
ow path between

the boundary point and the rest of the model domain.

Two dimensional 
ow may not occur at every point in a model domain. When one

or more wall is connected to a no-
ow type wall or a structure type wall, the model

automatically changes the neighboring walls, if they are 2-D walls, to direct 
ow walls.

The approximation is useful closer to no-
ow and structure type walls because it is dif-
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�cult to �nd representative nodal elevations in these cases. If the 
ow is known to be

one-dimensional in a local area, this boundary condition can be assigned to model the 
ow.

After discretizing the space, data �les have to be created to describe the properties of

the generated cells. Except for the imposition of wall type boundary conditions, geometry

data sets can be prepared using standard software packages or GIS utilities as described

later.

2.2 Model input data

A major portion of the input data consist of geometry data which can be created using

GMS or other software tools. Boundary condition data also can be considered as part of

geometry data. In addition to geometry data, many other types of data also have to be

prepared for a model run. They are referred to as primary input data, secondary input

data, time series data and output control data for convenience.

2.2.1 Primary input data

Primary input data consist of the time step length, implicit weighing factor, solver option,

and few other data values have to be selected before the model is run. This data is unique

to a model, and can be easily explained without a subjective bias.

The accuracy and the run time of a model of a given discretization is decided by the

length of the time step. A good reference for this behavior is described by Lal (1996).

The information in the paper is relevant for both rectangular and triangular cells. When

the overall cell size is reduced, the accuracy of the model increases, but the run time in-

creases even by a larger proportion. Small time steps are useful in improving the accuracy

of models, but may also increase run times. On the other extreme, very large time steps

can reduce the model accuracy, and can even make the model unstable due to nonlinear

instabilities. Some of the primary input variables are listed below.
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Table 2.6: De�nition of primary input data variables.

Name description

TT total simulation time

NT number of time steps

ALP weight used in the weighted implicit method; 0.0 is used for fully explicit

problems and 1.0 is used for fully implicit problems.

METH solver option.

IOPG option to select ground water or overland 
ow type problems.

NB number of wall type boundary conditions.

NE number of cells

ND number of nodes

NH the number of head boundary conditions speci�ed.

NITER number of iterations used to re�ne the sti�ness matrix.

NQ number of 
ow boundary conditions.

2.2.2 Secondary input data

Tolerances and other parameters which cannot be easily explained physically, but are es-

sential to make accurate and e�cient model runs fall into this category. The values of

these parameters are rarely changed except in the case of new model applications. This

data is used to enhance the computational e�ciency of models without sacri�cing the

accuracy of solutions. Following is a list of secondary input parameters, along with brief

descriptions.

STOL:

This parameter is active only when the Manning's equation is used. When the water

surface slope is small, a singularity is encountered when computing K because of the

division by the slope term. To avoid this, Manning's equation is replaced with a linear
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equation when the water surface slope is smaller than a small tolerance, STOL.

If the STOL used is too small, the resulting K coe�cients in the matrix can poten-

tially make the matrix near-singular, and the solver may require too many iterations to

converge. If STOL is too large, the solver may converge fast, but the solution may use an

approximate equation rather than the Manning's equation more often, possibly a�ecting

the results. The best value for a given model can be found after experimentation. Fig-

ure 2.3 shows how the number of iterations and the upstream head vary for one of the

Kissimmee river applications. According to the �gure, there is no advantage in selecting

a STOL value much smaller that 1.0 �10�5 and larger than 1.0�10�2. Some experi-

mentation indicated that the ratio of the smallest slope in the model to the largest slope

in the model cannot be less than the machine precision times a numerical safety factor

(10-1000). According to this guideline if the model is to be applied over a mountainous

area, STOL may have to be increased to a larger value.

ALPHA

This parameter is used as a weighing factor in the weighted implicit formulation. Values

of ALPHA of 0.0 and 1.0 changes the model from a fully explicit mode to a fully implicit

mode. A value of 0.5 is suggested for many weighted implicit models because of the

central time di�erencing and the associated higher order accuracy in time. In dynamic

1-D models such as MODBRANCH and UNET, ALPHA values in the range of 0.6-0.8

are selected to improve model stability while maintain the accuracy. The current model

shows the same behavior with ALPHA. A value of 1 gives the highest stability, and a value

of 0.5 gives the highest accuracy. A value within this range is used for most model runs.

TOL

This parameter is closely associated with the solver. It controls the maximum allowable

error norm before the iterations stop. The SLAP package assumes a value of 250.0

� machine precision for this parameter. For single precision, the machine precision is
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Figure 2.3: Figure showing the variation of the solution and the number of iterations with

STOL.
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approximately 1 � 10�7 and for double precision, it is 1 � 10�16. The only time this

tolerance has to be changed is when the number of iterations is extremely large. In that

case, its value can be increased to 500.0 � the machine precision, according to the SLAP

2.0 documentation.

HHTOL

This parameter is used to control the wetting and drying of cells in the overland 
ow

model when ground water is absent. A value of 0.001 m was used in the model, even if

any other value larger than the machine precision is possible. When the di�erence between

the water level and the ground level is less than this value, the ground is assumed to be

dry. The purpose of the parameter is to prevent the model from computing di�usion 
ows

when the depth is extremely small. Computation of 
ows with extremely small depths is

time consuming, and inaccurate. When a detention depth is used in a model, it is used

instead of HHTOL.

NITER

This parameter speci�es the maximum number of iterations allowed within a di�usion


ow time step. During most di�usion 
ow computations, the overland 
ow K value

used is computed using model state variables from the previous time step. However, the

true value of K may be di�erent for the current time step, and its best estimate can

be obtained by iteration within the same time step. If NITER is set to 0, no iterations

are carried out, and the default method is used in which K values are obtained from the

previous time step. Experimentation with the test problems showed that the number of

iterations needed is very small.

METH

This integer is used to select the method to solve the system of linear equations.
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2.2.3 Output control data

A typical model output consists of water levels and 
ow velocity vectors at selected

locations. In addition, discharge rates across lines in the domain are also useful. Since

there may be too many data points in a model run, a limited number of points are generally

selected at which the output is printed. The data that controls the output consists of a

list of cell numbers at which the stages are required, and details of the 
ow lines across

which discharges are required.

2.2.4 Marking 
ow lines

Flow across certain arbitrary lines in the South Florida landscape have become important

in decisionmaking. These 
ows can be computed by post-processing model output, or by

assigning the 
ow line information as part of the model input so that the required 
ow

can be added to the output. Flows across cell walls are computed by multiplying the wall

K of the overland 
ow or the ground water 
ow by the head di�erence. Figure 2.4 shows

part of the �nite volume model grid, and a line across which the 
ow is monitored. Flow

lines are given sequence numbers in the model. Each 
ow line is composed of a number

of cell walls. Flow across 
ow lines are computed by algebraically adding the 
ows across

each of the walls. The 
ow line in Fig. 2.4 is expressed in the data �le as shown in

Table 2.7. In the example, the 
ow through the walls in a North to South direction has

to be computed. The walls are made of nodes 1-3, 3-4 and 4-5. The input data shows

the two cells across which the 
ow takes places, with the �rst cell showing the donor cell,

and the next cell showing the receiver cell. The output gives the algebraic sum of 
ow

rates from cell 10 to cell 11 + cell 12 to cell 13 + cell 15 to cell 14 in a time series.

Table 2.7: Example of an input data �le de�ning a 
ow line.

Number of walls = 3

N1 N2 (N1 is the donor, N2 is the receiver)

10 11

12 13
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2.2.5 Time series data

Time series data made of sequential data values are used in the boundary conditions or

the source terms of the governing equations. Boundary conditions require head or dis-

charge time series. Source terms require mainly rainfalls and evapotranspirations. Every

cell in the model gets the rainfall and the ET data from a time series data �le. Every

boundary condition too gets stage or 
ow information from a time series data �le. Each

of the boundary condition time series is numbered, and identi�ed along with the boundary

condition during the speci�cation of the boundary condition. Time series data is provided

at regular intervals which can be di�erent from the run time steps.
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2.3 Model variables

Both overland and groundwater models use the average cell water level as the state vari-

able. The current and next time step values of this variable for each cell are H0(I) and

H1(I), respectively. Discharges across the walls are computed using these water levels.

Since the model solves only for the water levels, a model run can be completed without

ever computing the discharges. Discharge is a variable associated with the walls. Model

parameters related to land use types are assigned to cells. Manning's roughness, con-

ductivity, and storage coe�cient are three such parameters. Appendix C shows a list of

variables used in de�ning the model.

2.4 Vertical solution

Previous sections described the computational module used to simulate the horizontal

movement of water due to overland 
ow and groundwater 
ow. The vertical movement

of water through the soil is considered in the vertical solution module. Rainfall, in�ltration

and evapotranspiration are considered only in the computation of vertical 
ow. Exchange

of water between the cell walls is neglected during the computation of vertical 
ow. In

formulating the model, it is assumed that the horizontal and vertical 
ows can be solved

separately within each time step. If this assumption is not made, other simplifying as-

sumptions have to be made to proceed with the solution.

Figure 2.5 shows a sequence of steps suggested to carry out the vertical solution.

This sequence is based on the existing SFWMM. In the future, it may be necessary to

experiment with a number of sequences before deciding the best suitable for the model.

All sequences should ideally converge to the actual solution when the time step is made

small. The best sequence should give accurate results even with large time steps.
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Figure 2.5: Sequence of steps used to interact horizontal and vertical solutions.
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2.5 Numerical behavior of the vertical solution

The method used to carry out the vertical solution in the model is commonly referred to

as a split method in which the complete equation

@H

@t
= Kr2H + S(H) (2.1)

is solved by using numerical operators designed to solve

@H

@t
= Kr2H (2.2)

and
@H

@t
= S(H) (2.3)

A �rst order splitting method is currently planned, in which

Hn+1 = Hn + Lk(�t):Ls(�t) (2.4)

in which, Lk, Ls are the operators for Eq. 2.2 and Eq. 2.3. Lk is the �nite volume di�usion

solver, and Ls is the vertical solution. Other methods of splitting (Strang, 1968) are not

attempted.

The �rst order coupling works perfectly if S is not a function of H. However, if it is

a strong function, sti�ness will become a problem, and the numerical accuracy will begin

to su�er. It can be shown that Ls requires a stability condition of the form

�t � 2

�
(2.5)

in which, � is the largest value of @S(H)

@H
in the model domain. S is de�ned as RF �IN�

ET , and only IN and ET are functions of H. It is normally unlikely that these functions

will create large values of � to create inaccuracies or sti�nesses in the problem.
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Chapter 3

Tests carried out with the

overland 
ow module and the

groundwater 
ow modules of the

HSE

The accuracy of the two dimensional �nite volume module of the HSE was tested by com-

paring its results with the results obtained using a number of other models. A number of

test problems were used to carry out the experiment.

Test 1: Comparison of the HSE with the MODFLOW model

A test problem obtained from the text book by Wang (1982) was used in the comparison.

In the test problem, a pumping well is located in the middle of a 4000m � 4000 m area.

Tests were carried out for both con�ned and uncon�ned layer problems. When testing

as a con�ned aquifer, the transmissivity was assumed as 300 m2=day. When testing

as an uncon�ned aquifer, a conductivity of 30 m=s=day and a soil layer of 10 m were

assumed, below which the soil was considered to be impervious. The storage coe�cient

used was 0.002. A uniform water level of 10 m was assumed as the initial condition. For

the mod
ow simulation, �x = �y = 100 m were assumed. For the HSE simulation,

a random triangular grid with 238 triangles and 135 nodes was used. In comparison,
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MODFLOW used 1600 squares to discretize the same area. Pumping rates used for the

con�ned and uncon�ned aquifer tests were 2000 m3=day and 1000 m3=day respectively.

For both tests, 1 day time steps were used in fully implicit modes (� = 1). The simulation

period used was 30 days. Following are the cell numbers and the reference coordinates of

the monitoring sites.

Table 3.1: Test monitoring sites and their cell numbers.

Cell Radial dist. Co-ord. Name

117 0.0 m (0,0) Well

84 600.8 m (-596.8,-68.9) Site 1

95 1010.8 m (1010.8,-10.6) Site 2

101 2006.2 m (2006.1, -21.2) Site 3

Figure 3.1 shows the triangular mesh used with the �nite volume model. Figure 3.2

shows the time variation of the drawdowns at the well and the monitoring points dur-

ing the 30 day period for the uncon�ned aquifer. Both �nite volume and MODFLOW

solutions shown are for the uncon�ned aquifer. Figure 3.3 shows the contour plot for

drawdown near the uncon�ned aquifer, obtained using the MODFLOW model. Figure 3.4

shows the same drawdowns obtained using the �nite volume model. Figure 3.5 shows the


ow vectors at the end of 30 days.

The same tests were carried out with the con�ned aquifer too. Figure 3.6 shows

the time variation of drawdowns at the same monitoring points. Figure 3.7 shows the

drawdown contours obtained using the MODFLOW model. Figures 3.8 shows the same

contours obtained using the �nite volume model.

Test 2: Comparison of the HSE and axisymmetric solutions

The HSE overland 
ow solution for axisymmetric 
ow problem was compared with its

axisymmetric model solution. The same comparison has been previously carried out to
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verify that the axisymmetric solution agrees with both NSM and SFWMM solutions. The

test bed used has dimensions 160.9 km � 160.9 km (100 miles � 100 miles) and a 
at

bottom. The initial condition is

H =

�
0:4575 + 0:1525 cos(

�r

rmax

)

�
m for r � rmax (3.1)

H = 0:305 m otherwise (3.2)

in which, r = distance from the center; rmax = 32188 m; nb = 1:0. A no-
ow boundary

was assumed at the outer edge. The simulation time used was 12 days. A triangular mesh

with 325 elements and 180 nodes was used in the �nite volume solution. The time step

used was 6 hrs, and � = 0:5. The results were compared to the results of the axisymmet-

ric di�usion 
ow model using �x = 80.5 m and time step 1 min.

Figure 3.9 shows the mesh used for the overland 
ow test. Figure 3.10 shows the time

variation of water levels at the center (cell 107), and at radial distances 16522 m (cell

141) and 31945 m (cell 75) from the center. The �gure shows that the �nite volume

solution and the axisymmetric solution are very close to each other. Figure 3.11 shows

a contour plot of water levels at the end of the simulation. The �gure shows that the

circular patch of water remains circular during the simulation.
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Fig. 3.1: The triangular mesh used to simulate the groundwater problem using the �nite

volume model.
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Fig 3.3: Drawdown contours obtained using MODFLOW for the uncon�ned aquifer.
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Fig 3.4: Drawdown contours for the uncon�ned aquifer obtained using the �nite volume

model.
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Fig 3.5: Flow vectors for the uncon�ned aquifer obtained using the �nite volume model.
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Chapter 4

Numerical error analysis of the

overland 
ow modules

The accuracy of the results obtained using the overland 
ow and the groundwater 
ow

models depend on the spatial and temporal discretizations used. If the models are used

to simulate 
ow features of a certain wave length, the resolution of the mesh should be

su�cient to capture that 
ow feature. A description of the variation of the numerical

error with the spatial and temporal resolutions is available in Lal (1996). In this paper,

the experiments were conducted on models using rectangular grids. However, the results

can be used in the current �nite volume model as well.

In order to understand the behavior of the numerical error in the current cell centered

�nite volume model, triangular meshes of di�erent sizes were used to simulate known


ow patterns. The 160.9 km � 160.9 km square domain in Chapter 3 was used for the

test because an accurate solution for it can be obtained using axisymmetric methods.

Triangular meshes for the study were generated using the GMS package. Water level at

the center of the circular patch was used to estimate the approximate numerical error in

the solution. Table 4.1 shows a summary of test results, including the number of cells,

nodes, and run times.

The results in Table 4.1 can also be expressed in terms of the non-dimensional pa-
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Table 4.1: Solutions of the test problem obtained with various discretizations. * indicate the test
case shown in the previous chapter whose grid is not homogeneous.
Test No. elem. No. nodes CPU (s) No. iter. �x (m) �t (s) hend (m) �=� � � %

1 116 69 2.4 18 14939 51840 0.44877 2.15 0.0164 1.09
2 116 69 8.8 12 14939 10368 0.44840 2.15 0.0033 1.03
3 116 69 16.4 11 14939 5184 0.44840 2.15 0.0016 1.02

4* 238 135 10.3 1 10429 5184 0.43921 0.50
5* 238 135 15.7 1 10429 10368 0.43908 0.50
6* 238 135 27.7 1 10429 5184 0.43901 0.50 0.49

7 376 209 6.0 40 8298 207360 0.44500 3.88 0.2121 0.48
8 376 209 25.1 19 8298 20736 0.44456 3.88 0.0212 0.40
9 376 209 43.6 17 8298 10368 0.44444 3.88 0.0106 0.38
10 376 209 78.8 13 8298 5184 0.44438 3.88 0.0053 0.37

11 1536 809 60.1 104 4105 518400 0.45404 7.84 2.1660 1.96
12 1536 809 75.3 78 4105 207360 0.44494 7.84 0.8660 0.48
13 1536 809 98.3 67 4105 103680 0.44501 7.84 0.4332 0.48
14 1536 809 258.0 35 4105 20736 0.44388 7.84 0.0866 0.29
15 1536 809 436.0 27 4105 10368 0.44374 7.84 0.0433 0.27

rameters derived in the error analysis by Lal (1996). Since triangular cells are used in the

problem instead of square cells, �x in the table was obtained as
p
Ac in which, Ac is the

average area of a triangular cell. � is obtained as k�x in which, k is the wave number of

the water surface pro�le simulated in the model. k is computed as 2�=�. The expression

�=� gives the average number of spatial divisions within half the length of a sine wave.

� is computed as

� =
h

5

3

nb
p
Ss

�t

�x2
(4.1)

Table 4.1 shows that the behavior of the error is similar to the behavior of the error

observed in the paper (Lal, 1996). An estimate of the error obtained by expressing the

error at the peak of the sine wave as a percentage of the maximum depth increases when

(�=�) is decreased, and � is increased. Figures 4.1, 4.2 and 4.3 show the contour plots of

the water levels at various spatial spatial resolutions (�=�) of 2.15, 3.88 and 7.84. Results

show that with the higher resolution (�=�) of 7.85, the estimated error can be less than

1%.
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Fig 4.1: Mesh and the contour plot for the discretization with 116 cells
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Fig 4.2: Mesh and the contour plot for the discretization with 376 cells
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Fig 4.3: Mesh and the contour plot for the discretization with 1536 cells
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Chapter 5

One dimensional canal network

model

The one dimensional canal network model of the HSE is capable of simulating canal or

river 
ow in connected or disconnected canal or river systems. The one dimensional 
ow

is approximated using di�usion 
ow equations, assuming that the inertia terms can be

neglected. The importance of the inertia terms in canal systems will be studied separately

to understand the limitations of the di�usion 
ow assumption. The HSE network model is

capable of simulating 
ow through structures and junctions, while considering the e�ects

of di�erent head and discharge boundary conditions. In a coupled system consisting of

2-D overland 
ow and 1-D canal 
ow, the canal system is laid over the 2-D system, and

the interaction terms are computed based on the water levels at di�erent overlapping

elements.

5.1 Discretization of the canal system

Solution of the St. Venant equations, or its simpli�ed form, the di�usion 
ow equations,

requires discretization of the canal system. An ideal discretization should have uniformly

sized and shaped canal sections with high resolutions at locations where the user needs a

re�ned solution. The optimum level of the spatial discretization can be decided based on

the work by Lal (1996).
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Figure 1 shows an example of an discretization of a canal system using the current

�nite volume method. As the �rst step, the river or the canal is divided into a number of

sections or segments of somewhat equal length. Uniform segments may help to improve

the condition of the matrix, and therefore the accuracy of the solution and the speed of

computations. When the 
ow enters the model, it should enters at the end of a boundary

segment. In the �gure, segments begin at cross section c1 and end at cross sections c9

and c13. The �rst segment marked with italic 1 is bounded by cross section c1 and c2,

etc. These last two sections are associated with boundary conditions such as uniform 
ow

or river 
ow, etc.. Each of the river segment has cross section information at either end.

For segment 1, the river cross sections are at c1 and c2. A node or a joint is placed at the

ends of all river sections. Nodes are necessary at structures, joints, and the beginnings and

ends of canal segments. The main purpose of the nodes is to describe the con�guration

of canal networks. A single node 4 is placed near river cross sections c4, c5 and c6 in the

�gure asuming that these sections are very close.

The average properties of a segment should be used when describing a cross section.

Such average properties can be obtained by using a single section halfway in the segment,

or averaging the properties at its end sections. In the case of segment 1, sections c1 and

c2 at its ends can be used to obtain average properties. Lakes are represented by river

sections with extremely small resistances, and �nite plan areas. This makes it easy to

accomodate lakes easily in the network model.

Only two canal segments are attached to a structure, one at the upstream end, and

one at the downstream end. This helps to simplify the model formulation. If there are

structures connected to more than two segments, a small canal segment has to be intro-

duced to create a new junction, and the short segment should branch o� the main canal.

The short length would provide a small resistance, and would have the same e�ect as

having two canal segments are connected to the same structure.
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Figure 5.2 shows an example of a canal discretization in elevation. The dotted line

shows the ground pro�le. The �gure shows how the uniform segments with average

properties would appear in a conceptual diagram. Since the water level and the ground

elevation are assumed constant within a conceptual cell, the �gure helps to explain the

positions of the canal bed and water surface in the �eld and in the model. In the �gure,

the water surface and ground elevations at the interior canal segments are computed at

the mid points of river segments. As a result, 
ow between two internal segments takes

place approximately between the two centroids of the segments. The elevations at the

centroids provide the actual elevations found in the �eld. However, at the end segments

such as segment 1 at which the boundary conditions are applied, water and bed elevations

are computed at the for end of the segment instead of the centroid, so that the full length

of the canal is considered when accounting for friction.

When using the �nite volume method to simulate the canal systems, the discretized

canal segments are considered as individual control volumes having the required average

cross sectional properties, and correct open water areas. Segments are connected to each

other at the cell walls at each end. An imaginary cell wall is assumed to exist between

every pair ov cells connected at a node. In other words, a 
ow pair is assumed to exist

between every pair of cells connected. The friction relationships between these pairs of

cells form the basis of all 
ow computations in the network. The relationship takes the

form �Q = K�H, in which, �Q;K; and �H are discharge, resistance and head loss

between the segments. In In the case of structures, the friction is computed uding the

structure equations. In the case of canal segments, Manning's equation is used to com-

pute the friction between the centroids of the neighboring cells.

The friction relationship for two interior canal segments i and j is

Q = Ki;j(Hi �Hj) (5.1)
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Fig 5.1: Figure showing an example of a canal discretization.

52



∆x1

∆x2

∆x3

∆x4

upstream

downstream

H1

z1

z3

H3

H2

H3

1 2 3 4 5
1 2 3 4

H1
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in which
1

Ki;j

=

vuut0:5(
�xi

K2
i

+
�xj

K2
j

)�H (5.2)

Ki, Kj are the average K values for the segments (K = AR
2

3 =(n
p
S when Manning's

equation is used.) In the case of canal segment 1 in Fig. 5.1, the e�ective length �x1 has

to be doubled if Eq 5.2 is to be used without modi�cation because it is an end segment.

In the case of structures having an equation similar to Eq. 5.1 in which Ks is placed intead

of Ki;j, the added resistance to the 
ow due to the canal lenghts adjacent to it would

result in an e�ective resistance K 0

s given by

1

K 0

s

=
1

Ks

+
0:5�xi

Ki

+
0:5�xj

Kj

(5.3)

If the structure has more resistance to 
ow compared to the adjacent river segments

(Ki;Kj >> Ks), it is possible to assume K 0

s = Ks. If the structure is adjacent to a lake

as in S2 of Fig 5.1, K12 becomes extremely large, and would disappear from Eq. 5.3.

There are many similarities between the �nite volume building blocks or cells used in

the two dimensional model and the one dimensional network model. The similarities can

be explained using the following transformations of components which in general lead to

the reduction of the dimensionality by one.

polygons in 2-D ! Canal segments (line elements) in 1-D (5.4)


ow walls in 2-D ! 
ow walls (at nodes) in 1-D

nodes in 2-D ! none

The numerical formulation of the �nite volume method is also guided by conservative

principles as well. In the formulation, canal segments or 1-D elements are used to collect

water, and canal walls are used to control 
ow across canal segments. The 1-D wall types

include structure walls, 1-D 
ow walls, and no-
ow walls.
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Fig 5.1: Figure showing the discretization of a canal system.
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Table 5.1: Representation of the 1-D canal network using node and segment numbers.

Node No. of seg. seg1 seg2 seg3 seg4

1 1 1 0 0 0

2 2 3 4 0 0

3 3 1 2 3 0

4 3 2 5 9 0

5 3 4 9 7 0

6 2 7 8 0 0

7 2 5 6 0 0

8 2 6 8 0 0

5.1.1 Input data describing the network con�guration

After discretization, information about the network is described using a geometry data

�le. Table 5.1 shows part of the data �le describing the canal network discretization in

Fig 5.3. The information is arranged against the node numbers. Column 2 of the table

shows the number of segments attached to the nodes. Columns 3 and above show the

segment numbers which are attached to the nodes. In Table 5.1, node 3 for example has

three segments attached, which are marked as 1, 2 and 3. Appendix B shows the actual

input data �le used with Fig. 5.1

5.1.2 Internal representation of the canal con�guration

The internal representation of model con�guration data is di�erent from the user supplied

input data explained in Table 5.1. The internal data is created within the code by the

pre-processor. It is in a form that is most e�cient for the code to use. When structures

are imposed, the default wall types assigned by the pre-processor are replaced by the

imposed structure types. The default types are the 1-D 
ow type at internal walls, and

the no-
ow type at open ends. The 1-D 
ow type is computed based on di�usion 
ow

equations. During pre-processing, all the 1-D cell walls in a network are numbered and
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Table 5.2: The internal representation of a canal con�guration

1-D Cell wall no. u/s segment d/s segment Type Sequence No.

1 1 3 1

2 1 2 1

3 2 5 1

4 2 9 1

5 4 9 1

6 4 7 1

7 5 6 1

8 6 8 4 1

9 7 8 5 1

Some segment types used in the FORTRAN code:

0 = no-
ow

1 = canal 
ow based on the Manning's equation

4 = structure of a selected type.

5 = structure of a selected type. ........

their wall types are assigned to default types. The segments connected by the 1-D walls

are also determined. Table 5.2 show an example of this internal con�guration. In this

con�guration, the wall 8 of type 4 connects segments 6 and 8. The boundary condition

information �le re-assigns all default wall types in a canal network.

5.1.3 Boundary condition data

Head and 
ow boundary conditions are the most commonly used boundary conditions in

di�usion 
ow models. Flow control structures classi�ed as internal boundary conditions

are placed at walls separating the segments. Head and 
ow boundary conditions are

speci�ed for 1-D segments. They will force the water levels to take values speci�ed by

input time series. The sample input data �le in Table 5.3 speci�es the segment numbers,

57



and the time series sequence numbers of the boundary condition data �le. In the case

of 
ow boundary conditions, speci�c 
ow rates are related to the segments speci�ed by

the boundary condition data �le. An input data set for 
ow boundary conditions is very

similar to the data set shown in Table 5.3.

Table 5.3: Example of a head boundary condition.

Segment No. Time series sequence no.

3 1

5 2

6 2

...........

When structures are speci�ed at 1-D walls, the input data �le should contain the num-

bers of the two connected segments, and the new wall type. Table 5.4 shows an example

of a boundary condition �le used to describe Figure 5.1. The table shows structures of

type 4 and 5 between segment sets (6,8), and (7,8).

Table 5.4: Example of a structure type internal boundary condition.

Seg 1 Seg 2 wall type Sequence

6 8 4 1

7 8 5 1

.........

5.1.4 Description of canal cross sections in the model

In the current �nite volume model, canals are considered to be made of canal segments of

uniform cross section. Water levels and other parameters are also assumed to be constant
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within a segment. Two of the most important canal characteristics used in models are

the cross sectional area and the width. Both of these change with the water level, and

have to be computed at every time step. There are many methods available to provide

this information to a model, even if there are only a few ways they can be used. In most

models, they are used only to compute the area A, the width B, and the partial derivatives

with respect to H. In order to provide the user the capability to use a variety of data

formats in the current model, provisions are made for the user to write a simple routine

to read the cross section data, and obtain expressions for A, B, and R.

SUBROUTINE CSECT (H,Z,AREA,WIDTH,HYD_RAD)

.......obtain the information you need ....

.... write your routine ....

AREA = write your expression

WIDTH = write your expression

HYD_RAD = write your expression

RETURN

END

In the sample data �le shown in Appendix B, the expressions used to compute the

area and the width are

B = B0 +B1(H �H0) (5.5)

A = A0 +A1(H �H0) +A2(H �H0)
2 (5.6)

(5.7)

in which, H0 is a datum; B0; B1; A0; A1; A2 are coe�cients that can be determined using

regression or analytical methods. B1 = A2 = 0 was assumed in the example, meaning
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that the embankments are vertical.

5.1.5 Water level and 
ow boundary conditions

Water level boundary conditions can be assigned by listing the segment number and the

time series data �le number in the boundary condition data �le. In the case of water level

boundary conditions, the speci�ed segment will set the head speci�ed in the head time

series data �le. In the case of a 
ow boundary condition, the speci�ed 
ow will be added

to the segment.
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Chapter 6

Tests carried out with the 1-D

canal network model

The accuracy of the current 1-D weighted implicit di�usion model for canal networks was

tested using a number of methods. A 1-D problem with a known solution was used for

the �rst test. The known solution was compared with the solution obtained using a full

equation explicit model and the current di�usion model. Both the test problem and the

explicit model were obtained from the text by Viessmann, et al., (1977). Some other

tests were also carried out to compare the solutions of the canal network model and other

models.

6.1 Test 1 for a single canal stretch:

The problem used for the �rst test was obtained from the text written by Viessman, et

al., (1977). The problem is stated below.

A 20 ft wide rectangular channel 2 mi long having uniform 
ow of 6 ft depth is sub-

jectedto an upstream increase in 
ow of 2000 cfs in a period of 20 min. This 
ow

then decreases uniformly to the initial depth 
ow depth in an aditional period of 40

min. The channel has a bottom slope of 0.0015, an an estimated Manning's n of 0.02.

Calculate the explicit solution of hydraulic routing for this situation.
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The explicit method and the method of characteristics are used in the text to solve

the above problem. The time step used in the explicit method was 2 s. The time step

of the characteristic method was variable, but of the same order. The time step used

with the current weighted implicit solver was 6 s. The solver was found to be stable

unconditionally, and the results were accurate even with 120 s time steps. The canal was

discretized into 40 sections for both methods. Figures 6.1 and 6.2 shows the variations

of water levels and discharges at the upstream, midstream and the downstream points

when using both methods. Even if the di�usion model does not consider the inertia terms,

�gure shows that the results of both models agree with each other.

The data �le for the example is not included. But a smaller set of data from a similar

aplication with 4 spatial discretizations instead of 40 discretizations is shown in Appendix

C.

6.2 Test 2 for a branch channel

Flow split at a canal joint duting the passing of a 
ood peak was studied, and compared

with the results obtained for UNET. The example consists of a 1 mile channed splitting

into a 2 mile channel and a 3 mile channel. The properties of the three straight channels

are shown in Fig. 6.3. The bottom elebations at the ends are also shown. Manning's

roughness was assumed to be 0.02 for all channels. The 
ow hydrograph at the in
ow

begins as steady 
ow of 589.7 m3=s, and increases linearly from 589.7 m3=s to 1415.8

m3=s in 20 minutes and decreases linearly to 589.7 m3=s in 40 more minutes. The

downtream ends have head boundary conditions, with water levels speci�ed as 2.017 m

and 1.213 m at sections 2 and 3.

Figures 6.4 and 6.5 show a comparison of the di�usion 
ow model results (HSE) with

UNET results. The input data �les for UNET are shown in Appendix E. The space and

time steps used in the di�usion 
ow model were 6 minutes and 804 m. In the UNET

model, they were 2 mins and and 804 m respectively.
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Chapter 7

Linear equation solvers

When using implicit methods, linear equation solvers are required to solve for the �nal

water level. Solution of general linear equation solvers is time consuming. However, if the

physical domain is elongated for example, it is possible to obtain faster solutions using

banded matrix solvers if the cells are numbered carefully to minimize the bandwidth. In the

current model, cells interact only with a limited number of other cells in the neighborhood,

and therefore the system of equations is generally sparse. Research work on sparse solvers

has recently become active because of their use in many numerical and network models.

A number of solvers are available from major research labs. The Argonne National lab,

the Lawrence Livermore lab, NASA, IBM, Silicon Graphics and many other large scale

software developers support sparse equation solvers.

Both sparse and dense systems of linear equations can be solved using direct and

indirect methods. Direct method generally include elimination methods which do not

need iterations. A commonly used iterative method uses optimization, as in the case of

the conjugate gradient method. When using conjugate gradient methods, the system of

linear equation is expressed as A:x = b, and an approximate solution of x is obtained

by minimizing jjrjj2 in which r = b �A:x = residual vector. If x� is the proper solution

such that A:x� = b, the function to be minimized can be expressed as

f(x) = jjA:x� bjj = (x� x�)TC(x� x�) (7.1)
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in which, C = AT:A. When using a gradient method such as the Gauss Newton method,

the gradient is computed as

rf(x) = 2C:(x� x�) = �2r (7.2)

In the gradient method, iterations are carried out using

x(k+1) = x(k) � trf(x(k)) = x(k) + 2tr(k) (7.3)

in which k is the iteration number. Value of the scalar t required to minimize f can be

substituted to the above equation to obtain the following expression for x(k+1).

x(k+1) = x(k) +
r(k)T :r(k)

r(k)T :C:r(k)
r(k) (7.4)

The rate of convergence of r is related to eigenvalues of C using the following equation.

jjr(k+1)jj22 �
�
M �m

M +m

�2
jjr(k)jj22 (7.5)

in which M and m are the largest and smallest eigenvalues of the positive de�nite matrix

C. The rate of convergence may be improved when the cell sizes and cell conductivity

properties are nearly uniform throughout the physical domain. Reduction of the time step

may be a last resort to achieve the same goal.

The PetSc solver developed by the Argonne National lab and the SLAP solver devel-

oped by the Lawrence Livermore Lab take advantage of the iterative method described

earlier. Higher level routines in the package require the storage of only the nonzero el-

ements of A and their positions. Even this can be avoided if the user writes his own

subroutine for multiplying the matrix times a vector and calls the lower-level iterative

routines in the package.

7.0.1 SLAP 2.0 Sparse Linear Algebra Package

This package developed by the Lawrence Livermore Lab contains routines for the itera-

tive solution of symmetric and non-symmetric positive de�nite and positive semi-de�nite
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Table 6.1: Model run times with the SLAP 2.0 sparse solver.
Method Pre Proc. (s) Each step (s) NITER DT (days) H (m) Comm.

Explicit 0.8 3.8 0.5 0.441 Max. DT

(1) Jacobi 100.2 2.3 30 0.5 Diverged
(2) Gauss-Seidel 99.2 2.1-2.2 7-17 1.0 0.446 Conver.
(2) Gauss-Seidel 98.8 2.3 21 6.0 0.465 "
(3) Incomplete LU Iter.
Re�nement

99.7 2.5 13-9 6.0 0.465 "

(4) Diagonally scaled Conj.
Grad.

98.8 5.9 97 6.0 0.465 "

(5) Incomplete LU Conj. Grad. 99.0 2.6 15 6.0 0.465 "
(6) Diagonally scaled Biconj.
Grad.

99.8 2.6 20,17 6.0 0.465 "

(7) Incomplete LU Biconj. Grad. 100.3 2.4 7 6.0 0.465 "
(8) Diagonally scaled precondi-
tioned Bi-Conj. grad.

100.7 3.1 18,10 6.0 0.465 "

(9) Incomplete LU Biconj. Grad. 100.4 2.34 4 6.0 0.465 "
(10) Diagonally scaled Orthomin 100.4 2.34 27 6.0 0.465 "
(11) Incomplete LU Orthomin 100.1 2.22 10 6.0 0.465 "
(11) Diagonally scaled general-
ized min. residual

Error

(12) Incomplete LU generalized
min. res.

Error

linear systems. Included in this package are core routines to do iterative re�nement iter-

ation, preconditioned Conjugate Gradient iteration, preconditioned biConjugate gradient

iteration, Preconditioned biConjugate gradient squared iteration, orthomin iteration and

generalized Minimum Residual iteration. The authors are Dr. Mark K. Seager, Lawrence

Livermore National Lab., and Dr. Anne Greenbaum of the Courant Institute of Mathe-

matical Sciences. Package was last updated in 1989, and is available from netlib of the

Internet.

7.0.2 Test runs with the SLAP2.0 solver

A version of the model with 1250 triangular grids was tested to compare the run times of

various iterative solvers. A 12 day simulation with 6 day time steps was used in the fully

implicit mode. An explicit run could not be made with more than 0.5 day time steps.

Table 6.1 shows the run times of the model obtained using a Sparc 20 machine.
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7.0.3 Which Method To Use

In solving a large sparse linear system Ax = b using an iterative method, it is not necessary

to actually store the matrix A. Rather, what is needed is a procedure for multiplying the

matrix A times a given vector y to obtain the matrix-vector product, Ay. SLAP has been

written to take advantage of this fact. The higher level routines in the package require

storage only of the nonzero elements of A (and their positions), and even this can be

avoided, if the user writes his own subroutine for multiplying the matrix times a vector

and calls the lower-level iterative routines in the package.

If the matrix A is ill-conditioned, then most iterative methods will be slow to converge

(if they converge at all!). To improve the convergence rate, one may use a "matrix

splitting," or, "preconditioning matrix," say, M. It is then necessary to solve, at each

iteration, a linear system with coe�cient matrix M. A good preconditioner M should have

two properties: (1) M should "approximate" A, in the sense that the matrix inv(M)*A

(or some variant thereof) is better conditioned than the original matrix A; and (2) linear

systems with coe�cient matrix M should be much easier to solve than the original system

with coe�cient matrix A. Preconditioning routines in the SLAP package are separate from

the iterative routines, so that any of the preconditioners provided in the package, or one

that the user codes himself, can be used with any of the iterative routines.

7.0.4 Choice of the preconditioner

If you willing to live with either the SLAP Triad or Column matrix data structure of SLAP,

you can then choose one of two types of preconditioners to use: diagonal scaling or incom-

plete factorization. To choose between these two methods requires knowing something

about the computer you're going to run these codes on and how well incomplete factor-

ization approximates the inverse of your matrix.

Let's suppose you have a scalar machine. Then, unless the incomplete factorization
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is very poor, this is *GENERALLY* the method to choose. It will reduce the number

of iterations signi�cantly and is not all that expensive to compute. So if you have just

one linear system to solve and "just want to get the job done" then try incomplete fac-

torization �rst. If you are thinking of integrating some SLAP iterative method into your

favorite "production code" then try incomplete factorization �rst, but also check to see

that diagonal scaling is indeed slower for a large sample of test problems.

If your matrix is symmetric then you would want to use one of the symmetric system

solvers. If your system is also positive de�nite, (Ax,x) (Ax dot product with x) is positive

for all non-zero vectors x, then use Conjugate Gradient (SCG, SSDCG, SSICSG) methods.

If you're not sure it's SPD (symmetric and Positive De�nite) then try SCG anyway and if

it works, �ne. If you're sure your matrix is not positive de�nite then you may want to try

the iterative re�nement methods (SIR) or the GMRES code (SGMRES) if SIR converges

too slowly.

If the matrix is symmetric, you are working in an area of active research in numerical

analysis and there are new strategies being developed. Consequently take the following

advice with a grain of salt. If you matrix is positive de�nite, (Ax,x) (Ax dot product

with x is positive for all non-zero vectors x), then you can use any of the methods for

nonsymmetric systems (Orthomin, GMRES, BiConjugate Gradient, BiConjugate Gradient

Squared and Conjugate Gradient applied to the normal equations). If your system is not

too ill conditioned then try BiConjugate Gradient Squared (BCGS) or GMRES (SGMRES).

Both of these methods converge very quickly and do not require A' or M' (' denotes

transpose). SGMRES does require some additional storage. If the system is very ill

conditioned or nearly positive inde�nite ((Ax,x) is positive, but may be very small), then

GMRES should be the �rst choice, but try the other methods if you have to �ne tune

the solution process for a "production code". If you have a great preconditioner for the

normal equations (i.e., M is an approximation to the inverse of AA' rather than just A)
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then this is not a bad route to travel. Old wisdom would say that the normal equations are

a disaster (since it squares the condition number of the system and SCG convergence is

linked to this number of infamy), but some preconditioners (like incomplete factorization)

can reduce the condition number back below that of the original system.
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Appendix A

Benchmark test 1 for overland 
ow

Benchmark test are used during the development of the model to monitor the model

results during every stage of development. For purposes of monitoring, the following in-

termediate and �nal results are recorded for a number of test cases so that future runs

can be checked against them. In the �rst benchmark test, an axisymmetric test problem

is used. Future benchmark tests will be designed to monitor the execution times of model

runs. For the �rst benchmark test problem, all units are considered to be in SI. Other

parameters assumed are; the Manning's coe�cient = 1.0, STOL = 1.0E-9, VLARG =

1.0E25.

Benchmark test 1:

The �rst benchmark test is aimed at checking the wall numbers, matrices, and solutions

of the linear equations. The input data set for the problem is shown below. Figure 2.1

shows the grid for this data set.

TT NT ALP METH IOPG

10000 10 0.5 5 1

NE (elements), ND (nodes) NITER

18 16 1

NODE(I,K), K=1,4 (Nodal connectivity)

1 2 6 6

2 3 7 7

3 4 8 8

5 6 10 10

6 7 11 11

7 8 12 12

9 10 14 14

10 11 15 15

11 12 16 16

1 6 5 5

2 7 6 6

3 8 7 7

5 10 9 9

6 11 10 10

7 12 11 11
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9 14 13 13

10 15 14 14

11 16 15 15

NN X Y; ND values of nodal coordinates

1 0.000 15000.000

2 5000.000 15000.000

3 10000.000 15000.000

4 15000.000 15000.000

5 0.000 10000.000

6 5000.000 10000.000

7 10000.000 10000.000

8 15000.000 10000.000

9 0.000 5000.000

10 5000.000 5000.000

11 10000.000 5000.000

12 15000.000 5000.000

13 0.000 0.000

14 5000.000 0.000

15 10000.000 0.000

16 15000.000 0.000

NN Z BMAN; NE values of topos and initial water levels

1 500.000 1.00000

2 500.000 1.00000

3 500.000 1.00000

4 500.000 1.00000

5 500.000 1.00000

6 500.000 1.00000

7 500.000 1.00000

8 500.000 1.00000

9 500.000 1.00000

10 500.000 1.00000

11 500.000 1.00000

12 500.000 1.00000

13 500.000 1.00000

14 500.000 1.00000

15 500.000 1.00000

16 500.000 1.00000

17 500.000 1.00000

18 500.000 1.00000

NB No of externally imposed wall bnds

0

NN N3 N4 N5 N6

NG No of externally imposed GW wall bnds

0

NN N3 N4 N5 N6

NH No. of externally imposed head bnds

0

NN N1 ICUR

NQ No of source/sink

0

NN N1 ICUR
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NF Number of flow lines to be defined

0

NN N0 - Flow line no., number of pairs; followed by pairs themselves

The following intermediate results include the wall number assignments.

NN N1 N2 N3 N4 N5 N6 N7 N8

1 1 10 1 6 2 0 2 0

2 1 11 2 6 2 0 2 0

3 2 11 2 7 2 0 2 0

4 2 12 3 7 2 0 2 0

5 3 12 3 8 2 0 2 0

6 4 10 5 6 2 0 2 0

7 4 13 5 10 2 0 2 0

8 4 14 6 10 1 0 1 0

9 5 11 6 7 1 0 1 0

10 5 14 6 11 1 0 1 0

11 5 15 7 11 1 0 1 0

12 6 12 7 8 2 0 2 0

13 6 15 7 12 2 0 2 0

14 7 13 9 10 2 0 2 0

15 7 16 9 14 2 0 2 0

16 7 17 10 14 2 0 2 0

17 8 14 10 11 1 0 1 0

18 8 17 10 15 2 0 2 0

19 8 18 11 15 2 0 2 0

20 9 15 11 12 2 0 2 0

21 9 18 11 16 2 0 2 0

22 1 0 1 2 0 0 0 0

23 2 0 2 3 0 0 0 0

24 3 0 3 4 0 0 0 0

25 3 0 4 8 0 0 0 0

26 6 0 8 12 0 0 0 0

27 9 0 12 16 0 0 0 0

28 10 0 1 5 0 0 0 0

29 13 0 5 9 0 0 0 0

30 16 0 13 14 0 0 0 0

31 16 0 9 13 0 0 0 0

32 17 0 14 15 0 0 0 0

33 18 0 15 16 0 0 0 0

NN = wall number

N1, N2 = cells opposite the wall

N3, N4 = nodes defining the cell

N5 = overland flow wall type

N6 = overland flow wall sequence number

N7 = groundwater wall type

N8 = groundwater wall sequence number
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The output from within the time step loop consist of the K matrix. The following

table shows the non-zero values of the K matrix during the �rst three time steps.

Row Col K (setp1) K (step 2) K (step 3)

1 1 0.00000E+00 -0.79067E+03 -0.61761E+03

1 10 0.00000E+00 0.00000E+00 0.00000E+00

1 11 0.00000E+00 0.79067E+03 0.61761E+03

2 2 0.00000E+00 -0.14060E+04 -0.31711E+04

2 11 0.00000E+00 0.14060E+04 0.11200E+04

2 12 0.00000E+00 0.00000E+00 0.20511E+04

3 3 0.00000E+00 0.00000E+00 0.00000E+00

3 12 0.00000E+00 0.00000E+00 0.00000E+00

4 4 -0.13887E+03 -0.23370E+04 -0.18791E+04

4 10 0.00000E+00 0.79066E+03 0.61761E+03

4 13 0.00000E+00 0.14060E+04 0.11200E+04

4 14 0.13887E+03 0.14033E+03 0.14147E+03

5 5 -0.27773E+03 -0.28067E+03 -0.28294E+03

5 11 0.13887E+03 0.14033E+03 0.14147E+03

5 14 0.00000E+00 0.00000E+00 0.00000E+00

5 15 0.13887E+03 0.14033E+03 0.14147E+03

6 6 0.00000E+00 -0.14060E+04 -0.31711E+04

6 12 0.00000E+00 0.00000E+00 0.20511E+04

6 15 0.00000E+00 0.14060E+04 0.11200E+04

7 7 0.00000E+00 0.00000E+00 -0.41021E+04

7 13 0.00000E+00 0.00000E+00 0.20511E+04

7 16 0.00000E+00 0.00000E+00 0.00000E+00

7 17 0.00000E+00 0.00000E+00 0.20511E+04

8 8 -0.13887E+03 -0.23370E+04 -0.18791E+04

8 14 0.13887E+03 0.14033E+03 0.14147E+03

8 17 0.00000E+00 0.14060E+04 0.11200E+04

8 18 0.00000E+00 0.79066E+03 0.61761E+03

9 9 0.00000E+00 -0.79067E+03 -0.61761E+03

9 15 0.00000E+00 0.79067E+03 0.61761E+03

9 18 0.00000E+00 0.00000E+00 0.00000E+00
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10 1 0.00000E+00 0.00000E+00 0.00000E+00

10 4 0.00000E+00 0.79066E+03 0.61761E+03

10 10 0.00000E+00 -0.79066E+03 -0.61761E+03

11 1 0.00000E+00 0.79067E+03 0.61761E+03

11 2 0.00000E+00 0.14060E+04 0.11200E+04

11 5 0.13887E+03 0.14033E+03 0.14147E+03

11 11 -0.13887E+03 -0.23370E+04 -0.18791E+04

12 2 0.00000E+00 0.00000E+00 0.20511E+04

12 3 0.00000E+00 0.00000E+00 0.00000E+00

12 6 0.00000E+00 0.00000E+00 0.20511E+04

12 12 0.00000E+00 0.00000E+00 -0.41021E+04

13 4 0.00000E+00 0.14060E+04 0.11200E+04

13 7 0.00000E+00 0.00000E+00 0.20511E+04

13 13 0.00000E+00 -0.14060E+04 -0.31711E+04

14 4 0.13887E+03 0.14033E+03 0.14147E+03

14 5 0.00000E+00 0.00000E+00 0.00000E+00

14 8 0.13887E+03 0.14033E+03 0.14147E+03

14 14 -0.27773E+03 -0.28067E+03 -0.28294E+03

15 5 0.13887E+03 0.14033E+03 0.14147E+03

15 6 0.00000E+00 0.14060E+04 0.11200E+04

15 9 0.00000E+00 0.79067E+03 0.61761E+03

15 15 -0.13887E+03 -0.23370E+04 -0.18791E+04

16 7 0.00000E+00 0.00000E+00 0.00000E+00

16 16 0.00000E+00 0.00000E+00 0.00000E+00

17 7 0.00000E+00 0.00000E+00 0.20511E+04

17 8 0.00000E+00 0.14060E+04 0.11200E+04

17 17 0.00000E+00 -0.14060E+04 -0.31711E+04

18 8 0.00000E+00 0.79066E+03 0.61761E+03

18 9 0.00000E+00 0.00000E+00 0.00000E+00

18 18 0.00000E+00 -0.79066E+03 -0.61761E+03

Intermediate results also contain the right hand sides and the solution vector. If the

time step is small enough that even the explicit option is stable, solution can be compared
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with the RHS/cell area. For cell 5 for example, solution at step 1 is 0.02185 m, and

the RHS/Area is 0.0222 m, which are very close. This feature can be used to debug the

model.

Cell RHS (step1) RHS (step2) RHS (step3) Sol (step1) Sol (step2) sol (step3)

1 0.00000E+00 0.86398E+04 0.11228E+05 0.00000E+00 0.92056E-03 0.10587E-02

2 0.00000E+00 0.15364E+05 0.16323E+05 0.00000E+00 0.15989E-02 0.15074E-02

3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

4 0.13887E+06 0.11173E+06 0.10182E+06 0.10927E-01 0.81733E-02 0.75535E-02

5 -0.27773E+06 -0.27147E+06 -0.26531E+06 -0.21855E-01 -0.21386E-01 -0.20902E-01

6 0.00000E+00 0.15364E+05 0.16323E+05 0.00000E+00 0.15989E-02 0.15074E-02

7 0.00000E+00 0.00000E+00 0.65586E+04 0.00000E+00 0.00000E+00 0.66321E-03

8 0.13887E+06 0.11173E+06 0.10182E+06 0.10927E-01 0.81733E-02 0.75535E-02

9 0.00000E+00 0.86398E+04 0.11228E+05 0.00000E+00 0.92056E-03 0.10587E-02

10 0.00000E+00 0.86398E+04 0.11228E+05 0.00000E+00 0.92056E-03 0.10587E-02

11 0.13887E+06 0.11173E+06 0.10182E+06 0.10927E-01 0.81733E-02 0.75535E-02

12 0.00000E+00 0.00000E+00 0.65586E+04 0.00000E+00 0.00000E+00 0.66321E-03

13 0.00000E+00 0.15364E+05 0.16322E+05 0.00000E+00 0.15989E-02 0.15074E-02

14 -0.27773E+06 -0.27147E+06 -0.26531E+06 -0.21855E-01 -0.21386E-01 -0.20902E-01

15 0.13887E+06 0.11173E+06 0.10182E+06 0.10927E-01 0.81733E-02 0.75535E-02

16 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

17 0.00000E+00 0.15364E+05 0.16322E+05 0.00000E+00 0.15989E-02 0.15074E-02

18 0.00000E+00 0.86398E+04 0.11228E+05 0.00000E+00 0.92056E-03 0.10587E-02

The following table shows the water levels at 1000 s time intervals for a number of

cells.

Time (s) Cell 5 Cell 11 Cell 2 Cell 12 Cell 3 Cell 1

0.00000 2.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1000.00000 1.97815 1.01093 1.00000 1.00000 1.00000 1.00000

2000.00000 1.95676 1.01910 1.00160 1.00000 1.00000 1.00092

3000.00000 1.93586 1.02665 1.00311 1.00066 1.00000 1.00198

4000.00000 1.91543 1.03365 1.00474 1.00114 1.00033 1.00316
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5000.00000 1.89546 1.04014 1.00650 1.00169 1.00070 1.00444

6000.00000 1.87594 1.04617 1.00834 1.00231 1.00111 1.00581

7000.00000 1.85687 1.05178 1.01026 1.00300 1.00155 1.00725

8000.00000 1.83822 1.05700 1.01224 1.00374 1.00204 1.00876

9000.00000 1.81999 1.06185 1.01428 1.00453 1.00256 1.01033

10000.00000 1.80217 1.06636 1.01635 1.00537 1.00312 1.01195
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Appendix B

Benchmark test 1 for canal network 
ow

The following is a sample input data set for the 1-D network problem shown in Fig-

ure 5.1. The intermediate results for the test will be included later once the debugging is

complete. A description of the data set is given in Chapter 5.

NL NJ TT NT ALP METH NITER

9 8 3600. 36 0.6 9 1

NN Segs. LINK(I,K),K=1,LINK(I,1)

1 1 1

2 2 3 4

3 3 1 2 3

4 3 2 5 9

5 3 4 9 7

6 2 7 8

7 2 5 6

8 2 6 8

NN DATUM WID SLOP AREA LENGTH MAN

1 6.6548 6.096 0.0 11.1484 804.6 0.02

2 5.4483 6.096 0.0 11.1484 804.6 0.02

3 4.2418 6.096 0.0 11.1484 804.6 0.02

4 3.0353 6.096 0.0 11.1484 804.6 0.02

5 3.2032 6.096 0.0 11.1484 804.6 0.02

6 3.4374 6.096 0.0 11.1484 804.6 0.02

7 2.9374 6.096 0.0 11.1484 804.6 0.02

8 5.8256 6.096 0.0 11.1484 804.6 0.02

NCB No. of flowpair boundaries
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1

NN N1 N2 TYP ICUR

1 4 3 3 1

0.0015

NCH Head boundaries

0

NN N1 ICUR

NCQ Flow boundaries

1

NN N1 ICUR

1 1 1

Benchmark test 2 for canal network 
ow

The following benchmark test was used to check intermediate results of the test in

Viesmann's text. The channel is divided only into 5 sections so that the output is not too

huge for the debugger. The input data �le is as shown below.

NL NJ TT NT ALP METH NITER

5 6 3600. 12 0.5 9 1

NN Segs LINK(I,K),K=1,LINK(I,1)

1 1 1

2 2 1 2

3 2 2 3

4 2 3 4

5 2 4 5

6 1 5

NN DATUM WID SLOP AREA LENGTH MAN
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1 6.6568 6.096 0.0 11.1484 804.6 0.02

2 5.4498 6.096 0.0 11.1484 804.6 0.02

3 4.2428 6.096 0.0 11.1484 804.6 0.02

4 3.0358 6.096 0.0 11.1484 804.6 0.02

5 1.8288 6.096 0.0 11.1484 804.6 0.02

NCB No. of flowpair boundaries

1

NN N1 N2 TYP ICUR

1 5 4 3 1

0.0015

NCH Head boundaries

0

NN N1 ICUR

NCQ Flow boundaries

1

NN N1 ICUR

1 1 1

As shown in the data �le, unform 
ow boundary is of wall boundary type 3, across segment

5 and 4. There is one parameter involved with the boundary. This parameter is the slope

of the the uniform 
ow, which is 0.0015 in this case. The time step is 300 s; ALP=0.5.

The initial conditions are given with the following data �le.

6.6568

5.4498

4.2428

3.0358

1.8288
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and the output is given as

Time (s) H1 H3 H5 Q12 Q23 Q45

300.000 6.65660 5.44974 4.24279 23.5989 23.6008 23.6010

600.000 7.01213 5.55518 4.27473 28.4883 25.0380 23.9929

900.000 7.49610 5.85984 4.41536 34.0691 28.8599 25.6445

1200.00 7.96649 6.31984 4.72373 40.8121 34.8165 29.3736

1500.00 8.36481 6.82307 5.18673 48.4715 42.4144 35.6180

1800.00 8.26191 7.07059 5.62911 47.2384 46.9648 42.6789

2100.00 8.03579 6.99561 5.80756 48.5442 48.1602 47.4009

2400.00 7.79554 6.78641 5.71690 47.4425 48.8837 49.7458

2700.00 7.56304 6.54896 5.50939 44.0237 47.1199 49.5885

3000.00 7.34041 6.31762 5.27944 39.7949 43.3786 46.6690

3300.00 7.12210 6.09672 5.05606 35.4700 39.0834 42.5543

3600.00 6.90236 5.88151 4.84201 31.2498 34.8184 38.2685
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Appendix C

Selected subroutines used in the canal net-
work module

CLINK

This routine is used to read all the static data for the model except for the boundary

condition data.

CANWK

This routine is used to create 
ow pairs or 
ow walls between canal sections, and number

them 1, 2, etc., NPAIR. If there are only two segments, there is only one pair. For a

joint with three segments, there are 3 pairs. In general, there are n
2C pairs, in which i

is the number of branches. Each pair I has segments IPAIR(I,1), and IPAIR(I,2), and is

de�ned by type IPAIR(I,3). All canal types are also stored in IXL(I) to identify them as

end segments or middle segments.

CSTBN

This will change the 
ow pair type to new types such as structure types when structure

type internal boundary conditions are speci�ed.

UNIFC

This is where uniform 
ow boundary condition is speci�ed. Uniform 
ow is achieved by

assigning the last two river segments to re
ect the slope of the uniform 
ow. In the code,

the end river segment N1 is positioned with respect to the previous segment, and N th

row of the matrix is modi�ed.

CFORM

In CFORM, wall resistances of 
ow pairs are computed. The method used for joints with

2 segments is not the same as the method used for joints with more than 2 segments.

Matrix values are computed to get ready for the implicit solution.
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BOUNC

Wall resistance across structures is computed, and added to the matrix.

COURC

Source term information is computed here. The boundary 
ows as well as branch in
ows

are considered as part of the 
ow.
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Appendix D

De�nition of variables in the overland 
ow
module

Table C.1: De�nition of input variables in the overland 
ow module.

ALP is an input parameter. A value of 0 selects the explicit solution, 1 selects

the implicit solution, and 0.5 or higher selects fairly stable solutions suitable

for most simulations.

BMAN(i) Manning's roughness coe�cient of cell i.

COND(i) average conductivity of the soil in cell i.

CONS(i,j) constants de�ning structure boundary conditions. i = the sequence number

of the structure provided as input by the used counting 1, 2, 3, n, n+1;

j = counter for the constants, ie, j=0 refers to C0 etc.

CORN(i) coordinates of node i in complex form.

DET(i) Detention depth of cell i.

DT in DTRAD gives the time interval at which boundary condition time series

data is provided in data �le qhbnd.dat.

DTO in subroutine MAIN de�nes the time interval at which the output is printed.

H0(i) Water level in cell i at previous time step. Initial conditions are provided

as input data.

HBND(i) water level boundary conditions, stored in an array. i are the sequence

numbers de�ned as ICUR.

IHBND(i,j) de�nition of head boundary condition type; i = 1; 2; : : : NH gives the

boundary condition sequence number; j = 1 gives the cell number on

which it is imposed; j = 2 gives the curve number or sequence number of

the time series head boundary condition HBND.
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Table C.2: De�nition of variables in the overland 
ow module.

IQBND(i,j) de�nition of source/sink (pumping, in
ow etc.) boundary condition type;

i = 1; 2; : : : NQ gives the boundary conditions sequence number; j = 1

gives the cell number on which it is imposed; j = 2 gives the curve number

or sequence number of the time series head boundary condition HBND.

IOPG Variable used to select the type of run; =1 if it is an overland 
ow only

case; =2 if it is an ground water only case; =3 if both overland and ground

water 
ow are considered.

METH is an input parameter used to select the sparse linear solution method. Use

a value of 1-13 in the case of SLAP. Values of 6 and 7 are found to be

suitable for most cases for SLAP.

NB number of overland 
ow boundary conditions attached to walls.

ND Number of nodes

NE Number of cells

NH number of head boundary conditions.

NG number of ground water 
ow boundary conditions attached to walls.

NITER Number of iterations carried out within a time step until the matrixK used

is accurate for the time step.

NODE(i,j) Node numbers j = 1; 2; ::6 de�ning element numbers around node i. j = 7

is reserved to store the number of nodes. Third and fourth node numbers

are repeated in triangles. Polygons up to hexagons can be stored without

re-dimensioning.

NQ number of source/sink boundary conditions attached to cells.

NT is an input parameter asking for the number of time steps

NWAL(i,5) overland 
ow boundary condition types attached to walls; i = wall number;

j= 0 is a no 
ow; j = 1 is 2-D 
ow using line integrated 
ow vector, j = 2

is direct 
ow equation, j = 4 is weir boundary, > 4 yet unde�ned structure

boundaries.
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Table C.3: De�nition of variables in the overland 
ow module.

NWAL(i,7) ground water 
ow boundary condition types attached to walls; i = wall

number; j= 0 is a no 
ow; j = 1 is 2-D 
ow using line integrated 
ow vec-

tor, j = 2 is direct 
ow equation, j > 4 yet unde�ned structure boundaries.

QBND(i) source sink type boundary condition time series i. i is the curve number

that corresponds to the sequence number de�ned in ICURV at the input.

SG(I) speci�c yield of soil in cell i.

THET Fraction of the total area which is wet.

TT is an input parameter, asking for the total simulation time in sec.

TOLH in subroutine MAIN, TOLH gives a tolerance limit for the iteration loop

for re�ning K to exit.

TOL in KFORM is the cuto� �H below which, K computed using the Man-

ning's equation is considered too large.

Z(i) average elevation in cell i; If the elevation is a�ecting the wet area, Z(i) is

the elevation at which area = 0.

ZB(i) elevation of the bottom of the aquifer.

ZU(i) elevation of the cell when the entire cell jest gets wet.
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Table C.4: Table showing the de�nition of some internal variables.

Name De�nition

A(i) The matrix solved by the implicit method (self)

ALP Time weighing factor; = 0 means explicit and =1 means implicit (input).

AREA(i) Area of cell i

B(i) Right hand side of the matrix solution scheme.

CENT(i) Coordinates of the cell centroid of cell i in complex form (self)

DT Time step (input)

DTO Time interval at which the output is saved (input)

H1(i) Water level in cell i at current time step (active state variable)

HBND(i) Current head value from time series i (self)

HCL(i) Water stage at node i if needed (self)

IBC(i,1) 1 makes cell i a boundary cell for overland 
ow; 0 otherwise.

IBC(i,2) 1 makes cell i a boundary cell for groundwater 
ow; 0 otherwise.

ID(i,j) Storage location in the 1-D matrix of a non-zero value that belong in row

i, column j.

METH The linear solution method used, (1-13 for slap) (input)

NCL(i,j) Cell numbers clustering around node i, in anti-clockwise direction (self

generated). j = 1 is used to store the number of cells around the nodes.

NCL(i,j),j=2,.. are used to store the cell numbers.

NELT Number of non-zero elements.

NT Number of time steps (Input)

NW Number of internal cell walls (self)

NWAL(i,j) Cell wall information for walls i = 1; NW . J = 1 and J = 2 give the cell

numbers on both sides of the wall. J = 3 and J = 4 give nodes de�ning

the wall i in ascending order. j = 5 is reserved to give the type of the cell

boundary. j = 6 gives the speci�c boundary condition curve number.
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Table C.5: Table showing the de�nition of some internal variables.

Name De�nition

QBND(i) Current discharge rate at time series i.

TIME Time elapsed in the simulation (self)

TT Total run time

UX(i), UY(i) overland 
ow velocities in X and Y directions (self)

VX(i), VY(i) groundwater 
ow velocities in X and Y directions (self)

XKG(i) groundwater conductivity of wall i.

XKO(i) overland conductivity of wall i.

XLL(i,1) Length of cell wall i (self generated).

XLL(i,2) Distance from cell wall to circumcenter of cell N1 (self).

XLL(i,3) Distance from cell wall to circumcenter of cell N2 (self).

XLC(i),XLS(i) Direction cosines of the slopes of the outward normal to cell wall i (self)

ZBCL(i) Average elevation of the bottom of aquifer at a node (self).

ZCL(i) Average ground elevation at a node (self)
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Appendix D

De�nition of variables in the canal 
ow
module

Table D.1: De�nition of input variables in the canal 
ow module.

A0(i) The K matrix in 1-D storage mode, for the previous time step. This

information is to be used in the iterative mode.

A1(i) The K matrix in 1-D storage mode, for the current time step.

AA(i) A(i) matrix saved to be used in case of instability.

B(i) The right hand side vector.

CAREA(i) Area of canal section i.

CBAR(i) Canal area below the datum.

CBWI(i) Canal width at datum.

CBOT(i) Elevation of the canal bottom below which there is no 
ow.

CKNOD(i) K value of the node (i).

CMAN(i) Manning's roughness of canal segment.

CON(i,j) Constants used to de�ne structures. i gives the sequence numbers attached

to the structures, j gives the constants. In the case of uniform 
ow,

CON(i,1) gives the uniform 
ow slope.

CSLOP(i) Bank slope of the canal.

CWIDT(i) Width of canal i.

DHC(i) �H

HC0(i) Head of canal section i at timestep n.

HC1(i) Head of canal section i at timestep n + 1.

HCBAS(i) Datum of canal at which area is provided as CBAR(i).

HCBND(i) Head boundary condition given as time series i.
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IHBNC(i,j) Array providing head boundary conditions. i gives the head boundary con-

dition sequence number, marked 1,2,3,etc.. j = 1 gives the canal segment

number; j = 2 gives the sequence number of the input time series data �le

related to the canal segment.

IQBNC(i,j) Array providing 
ow boundary conditions. i gives the 
ow boundary condi-

tion sequence number, marked 1, 2, etc. j = 1 gives the segment number

imposed with the boundary condition; j = 2 gives the sequence number of

the input 
ow time series.

IPAIR(i,j) List of 
ow pairs; i = 
owpair number, j = 1, 2 gives segment connected

by the 
ow pair; j = 3 gives the type of the boundary condition or the


ow pair type. If the type IPAIR(I,3) = 0, there is no 
ow; if = 1, it is a

Manning's equation type; if = 3, it is a uniform 
ow type, with IPAIR(I,1)

as segment for which the uniform 
ow is applied. IPAIR(I,3) = 4 and above

gives various structure type boundary conditions.

KA1 Size of matrix A.

KE maximum array size for the number of 2-D elements.

KL Maximum array size for number of canal sections.

KN Maximum array size for the number of 2-d nodes.

KP Maximum array size for Number of canal joints.

KR maximum array size for the number of canal 
ow pairs.

LINK(i,j) i = 1; 2; : : : NJ gives the joint numbers; j = 1 gives the number of

canal segment attached to the joint; j = 2; 3; :: gives the speci�c segment

numbers attached to the node.

NJ Number of canal joints.

NL Number of canal segments.

QCBND(i) Flow boundary condition value provided for time series i.

QPAIR(i) Discharge across 
ow pair i.

XL(i) Length of canal segment (i).
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Appendix E

UNET input data �les used to carry out
test 2

T1 Branch into two

T2 Example

T3 REACH 1

XK 99.9 .5 0.5

NC .02 .02 .02

PR ON

UB

X1 0.0 4 0 1000. 52800. 52800. 52800.

HY 1RM0.0

GR 49.04 0 29.04 0 29.04 1000. 49.04 1000.

X1 1.0 4 0 1000. 0. 0. 0. -05.28

HY 1RM1.0

GR 49.04 0 29.04 0 29.04 1000. 49.04 1000.

DB 2 3

T1 Branch into two

T2 Example

T3 REACH 2

XK 99.9 .5 0.5

UB 1

X1 1.0 4 0 2000. 105600. 105600. 105600.

HY 2RM1.0

GR 43.76 0 23.76 0 23.76 2000. 43.76 2000.

X1 3.0 4 0 2000. 0. 0. 0. -21.12

HY 2RM3.0

GR 43.76 0 23.76 0 23.76 2000. 43.76 2000.

DB

T1 Branch into two
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T2 Example

T3 REACH 3

XK 99.9 .5 0.5

UB 1

X1 1.0 4 0 600. 158400. 158400. 158400. 0.

HY 3RM1.0

GR 43.76 0 23.76 0 23.76 600. 43.76 600.

X1 4.0 4 0 600. 0. 0. 0. -23.76

HY 3RM4.0

GR 43.76 0 23.76 0 23.76 600. 43.76 600.

DB

EJ

____________________________________________________________

* Canal Branching

* Canal PROBLEM

* TEST

JOB CONTROL

T T 2MIN 0 -1 F 1. F T -1 2MIN

MAXINSTEPS=800

TIME WINDOW

20OCT92 0000 20OCT92 2200

UPSTREAM FLOW AT REACH 1

1

7

0 20825.0

1 20825.0

1.333 50000.0

2 20825.0

6 20825.0
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12 20825.0

22 20825.0

DOWNSTREAM STAGE HYDROGRAPH

2 5

0 6.6174

1 6.6174

2 6.6174

3 6.6174

5 6.6174

DOWNSTREAM STAGE HYDROGRAPH

3 5

0 3.9799

1 3.9799

2 3.9799

4 3.9799

5 3.9799

WRITE HYDROGRAPHS TO DSS

HBR.DSS

EJ
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